skip to main content


Search for: All records

Creators/Authors contains: "Karkare, Kirit S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    We consider the potential for line intensity mapping (LIM) of the rotational CO(1-0), CO(2-1), and CO(3-2) transitions to detect deviations from General Relativity from 0 < z < 3 within the framework of a very general class of modified gravity models, called Horndeski’s theories. Our forecast assumes a multitracer analysis separately obtaining information from the matter power spectrum and the first two multipoles of the redshift space distortion power spectrum. To achieve ±0.1 level constraints on the slope of the kinetic gravity braiding and Planck mass evolution parameters, a mm-wave LIM experiment would need to accumulate ≈108–109 spectrometre-hours, feasible with instruments that could be deployed in the 2030s. Such a measurement would constrain the parameters of Horndeski’s theory at a level at worst competitive to and at best an order of magnitude tighter than existing constraints from the CMB and LSS. Our modelling code is publicly available.

     
    more » « less
  2. Abstract Line intensity mapping (LIM) is emerging as a powerful technique to map the cosmic large-scale structure and to probe cosmology over a wide range of redshifts and spatial scales. We perform Fisher forecasts to determine the optimal design of wide-field ground-based millimeter-wavelength LIM surveys for constraining properties of neutrinos and light relics. We consider measuring the auto-power spectra of several CO rotational lines (from J = 2–1 to J = 6–5) and the [C ii ] fine-structure line in the redshift range of 0.25 < z < 12. We study the constraints with and without interloper lines as a source of noise in our analysis, and for several one-parameter and multiparameter extensions of ΛCDM. We show that LIM surveys deployable this decade, in combination with existing cosmic microwave background (CMB; primary) data, could achieve order-of-magnitude improvements over Planck constraints on N eff and M ν . Compared to next-generation CMB and galaxy surveys, a LIM experiment of this scale could achieve bounds that are a factor of ∼3 better than those forecasted for surveys such as EUCLID (galaxy clustering), and potentially exceed the constraining power of CMB-S4 by a factor of ∼1.5 and ∼3 for N eff and M ν , respectively. We show that the forecasted constraints are not substantially affected when enlarging the parameter space, and additionally demonstrate that such a survey could also be used to measure ΛCDM parameters and the dark energy equation of state exquisitely well. 
    more » « less
  3. Zmuidzinas, Jonas ; Gao, Jian-Rong (Ed.)
    Observations of the Cosmic Microwave Background rely on cryogenic instrumentation with cold detectors, readout, and optics providing the low noise performance and instrumental stability required to make more sensitive measurements. It is therefore critical to optimize all aspects of the cryogenic design to achieve the necessary performance, with low temperature components and acceptable system cooling requirements. In particular, we will focus on our use of thermal filters and cold optics, which reduce the thermal load passed along to the cryogenic stages. To test their performance, we have made a series of in situ measurements while integrating the third receiver for the BICEP Array telescope. In addition to characterizing the behavior of this receiver, these measurements continue to refine the models that are being used to inform design choices being made for future instruments. 
    more » « less
  4. Zmuidzinas, Jonas ; Gao, Jian-Rong (Ed.)
    The BICEP3 Polarimeter is a small aperture, refracting telescope, dedicated to the observation of the Cosmic Microwave Background (CMB) at 95GHz. It is designed to target degree angular scale polarization patterns, in particular the very-much-sought-after primordial B-mode signal, which is a unique signature of cosmic inflation. The polarized signal from the sky is reconstructed by differencing co-localized, orthogonally polarized superconducting Transition Edge Sensor (TES) bolometers. In this work, we present absolute measurements of the polarization response of the detectors for more than approximately 800 functioning detector pairs of the BICEP3 experiment, out of a total of approximately 1000. We use a specifically designed Rotating Polarized Source (RPS) to measure the polarization response at multiple source and telescope boresight rotation angles, to fully map the response over 360 degrees. We present here polarization properties extracted from on-site calibration data taken in January 2022. A similar calibration campaign was performed in 2018, but we found that our constraint was dominated by systematics on the level of approximately 0.5° . After a number of improvements to the calibration set-up, we are now able to report a significantly lower level of systematic contamination. In the future, such precise measurements will be used to constrain physics beyond the standard cosmological model, namely cosmic birefringence. 
    more » « less
  5. The BICEP/Keck series of experiments target the Cosmic Microwave Background at degree-scale resolution from the South Pole. Over the next few years, the "Stage-3" BICEP Array (BA) telescope will improve the program's frequency coverage and sensitivity to primordial B-mode polarization by an order of magnitude. The first receiver in the array, BA1, began observing at 30/40 GHz in early 2020. The next two receivers, BA2 and BA3, are currently being assembled and will map the southern sky at frequencies ranging from 95 GHz to 150 GHz. Common to all BA receivers is a refractive, on-axis, cryogenic optical design that focuses microwave radiation onto a focal plane populated with antenna-coupled bolometers. High-performance antireflective coatings up to 760 mm in aperture are needed for each element in the optical chain, and must withstand repeated thermal cycles down to 4 K. Here we present the design and fabrication of the 30/40 GHz anti-reflection coatings for the recently deployed BA1 receiver, then discuss laboratory measurements of their reflectance. We review the lamination method for these single- and dual-layer plastic coatings with indices matched to various polyethylene, nylon and alumina optics. We also describe ongoing efforts to optimize coatings for the next BA cryostats, which may inform technological choices for future Small-Aperture Telescopes of the CMB "Stage 4" experiment. 
    more » « less
  6. Zmuidzinas, Jonas ; Gao, Jian-Rong (Ed.)
  7. Zmuidzinas, Jonas ; Gao, Jian-Rong (Ed.)
  8. Zmuidzinas, Jonas ; Gao, Jian-Rong (Ed.)
  9. Abstract CMB-S4—the next-generation ground-based cosmic microwave background (CMB) experiment—is set to significantly advance the sensitivity of CMB measurements and enhance our understanding of the origin and evolution of the universe. Among the science cases pursued with CMB-S4, the quest for detecting primordial gravitational waves is a central driver of the experimental design. This work details the development of a forecasting framework that includes a power-spectrum-based semianalytic projection tool, targeted explicitly toward optimizing constraints on the tensor-to-scalar ratio, r , in the presence of Galactic foregrounds and gravitational lensing of the CMB. This framework is unique in its direct use of information from the achieved performance of current Stage 2–3 CMB experiments to robustly forecast the science reach of upcoming CMB-polarization endeavors. The methodology allows for rapid iteration over experimental configurations and offers a flexible way to optimize the design of future experiments, given a desired scientific goal. To form a closed-loop process, we couple this semianalytic tool with map-based validation studies, which allow for the injection of additional complexity and verification of our forecasts with several independent analysis methods. We document multiple rounds of forecasts for CMB-S4 using this process and the resulting establishment of the current reference design of the primordial gravitational-wave component of the Stage-4 experiment, optimized to achieve our science goals of detecting primordial gravitational waves for r > 0.003 at greater than 5 σ , or in the absence of a detection, of reaching an upper limit of r < 0.001 at 95% CL. 
    more » « less